Level -1/2 Realization of Quantum N-Toroidal Algebra in Type Cn

نویسندگان

چکیده

We construct a level $-\frac{1}{2}$ vertex representation of the quantum N-toroidal algebra for type $C_n$, which is natural generalization usual toroidal algebra. The construction also provides $C_n$ as by-product.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

REPRESENTATIONS OF THE QUANTUM TOROIDAL ALGEBRA ON HIGHEST WEIGHT MODULES OF THE QUANTUM AFFINE ALGEBRA OF TYPE gl N

A representation of the quantum toroidal algebra of type sl N is de ned on every integrable irreducible highest weight module of the the quantum a ne algebra of type gl N : The q-version of the level-rank duality giving the reciprocal decomposition of the q-Fock space with respect to mutually commutative actions of U 0 q ( b gl N ) of level L and U 0 q ( b sl L ) of level N is described.

متن کامل

Paths and Tableaux Descriptions of Jacobi–Trudi Determinant Associated with Quantum Affine Algebra of Type Cn

We study the Jacobi–Trudi-type determinant which is conjectured to be the q-character of a certain, in many cases irreducible, finite-dimensional representation of the quantum affine algebra of type Cn. Like the Dn case studied by the authors recently, applying the Gessel–Viennot path method with an additional involution and a deformation of paths, we obtain an expression by a positive sum over...

متن کامل

REPRESENTATIONS OF THE TWISTED QUANTIZED ENVELOPING ALGEBRA OF TYPE Cn

We prove a version of the Poincaré–Birkhoff–Witt theorem for the twisted quantized enveloping algebra U′q(sp2n). This is a subalgebra of Uq(gl2n) and a deformation of the universal enveloping algebra U(sp2n) of the symplectic Lie algebra. We classify finitedimensional irreducible representations of U′q(sp2n) in terms of their highest weights and show that these representations are deformations ...

متن کامل

Representations and Q-Boson Realization of The Algebra of Functions on The Quantum Group GLq(n)

We present a detailed study of the representations of the algebra of functions on the quantum group GLq(n). A q-analouge of the root system is constructed for this algebra which is then used to determine explicit matrix representations of the generators of this algebra. At the end a q-boson realization of the generators of GLq(n) is given.

متن کامل

Quantum Algebra of N Superspace

We identify the quantum algebra of position and momentum operators for a quantum system bearing an irreducible representation of the super Poincaré algebra in the N extended superspace. This algebra is noncommutative for the position operators. We use the properties of superprojectors in D = 4 N superspace to construct explicit position and momentum operators satisfying the algebra. They act on...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Algebra Colloquium

سال: 2022

ISSN: ['0219-1733', '1005-3867']

DOI: https://doi.org/10.1142/s1005386722000074